2007 Vol. 9, No. 5 939–941

General Asymmetric Hydrogenation of α-Branched Aromatic Ketones Catalyzed by TolBINAP/DMAPEN—Ruthenium(II) Complex

Noriyoshi Arai,[†] Hirohito Ooka,^{†,‡} Keita Azuma,[†] Toshio Yabuuchi,[†] Nobuhito Kurono,[†] Tsutomu Inoue,[‡] and Takeshi Ohkuma*,[†]

Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, and Odawara Research Center, Nippon Soda Co., Ltd., 345 Takada, Odawara 250-0280, Japan

ohkuma@eng.hokudai.ac.jp

Received January 17, 2007

ABSTRACT

A catalyst system consisting of RuCl₂[(S)-tolbinap][(R)-dmapen] and t-C₄H₉OK in 2-propanol effects asymmetric hydrogenation of arylglyoxal dialkylacetals to give the α -hydroxy acetals in up to 98% ee. Hydrogenation of racemic α -amidopropiophenones under dynamic kinetic resolution predominantly gives the syn alcohols in up to 99% ee and >98% de, while the reaction of racemic bezoin methyl ether gives the anti alcohols in excellent stereoselectivity.

Asymmetric hydrogenation of functionalized ketones is a key technology providing synthetically useful chiral functionalized alcohols.¹ A variety of Ru and Rh catalysts modified by chiral phosphine ligands have been synthesized for this important transformation.^{1,2} However, to our knowledge, no efficient homogeneous catalyst exists for enantioselective

hydrogenation of arylglyoxal dialkylacetals to the chiral α -hydroxy acetals, which can be converted to the chiral α -hydroxy carbonyl compounds, 1,2-diols, β -amino alcohols, and aldol derivatives.^{3,4} Heterogeneous reaction of phenylglyoxal diethylacetal (**2a**) and the dimethylacetal in the presence of Pt/Al₂O₃ catalysts modified by cinchonidine derivatives is the only example, although the optical yield was less than 90%.^{3,5} We also tried asymmetric hydrogenation of **2a** with RuCl₂[(R)-xylbinap][(R)-daipen]⁶ and t-C₄H₉-

[†] Hokkaido University.

[‡] Nippon Soda Co., Ltd.

^{(1) (}a) Ohkuma, T.; Noyori, R. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, Heidelberg, 1999; Vol. 1, pp 199–246. (b) Ohkuma, T.; Kitamura, M.; Noyori, R. In *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; pp 1–110. (c) Ohkuma, T.; Noyori, R. In *Transition Metals for Organic Synthesis*, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, pp 29–113. (d) Ohkuma, T.; Noyori, R. In *The Handbook of Homogeneous Hydrogenation*; de Vries, J. G., Elsevier, C. J., Eds.; Wiley-VCH: Weinheim, 2007; Vol. 3, pp 1105–1163.

⁽²⁾ For asymmetric hydrogenation of α -chloro aromatic ketones catalyzed by chiral arene—Ru complexes, see: Ohkuma, T.; Tsutsumi, K.; Utsumi, N.; Arai, N.; Noyori, R.; Murata, K. *Org. Lett.* **2007**, *9*, 255–257.

⁽³⁾ Studer, M.; Burkhardt, S.; Blaser, H.-U. *Chem. Commun.* **1999**, 1727–1728.

⁽⁴⁾ Sato, S.; Matsuda, I.; Izumi, Y. J. Organomet. Chem. 1988, 352, 223–238.

⁽⁵⁾ Asymmetric reduction with chiral metal-hydride reagents. See: (a) Cho, B. T.; Chun, Y. S. *Tetrahedron: Asymmetry* **1994**, *5*, 1147–1150. (b) Cho, B. T.; Chun, Y. S. *J. Chem. Soc. Perkin Trans. 1* **1999**, 2095–2100.

⁽⁶⁾ TolBINAP = 2,2'-bis(di-4-tolylphosphino)-1,1'-binaphthyl. XylBINAP = 2,2'-bis(di-3,5-xylylphosphino)-1,1'-binaphthyl. DAIPEN = 1,1-di(4-anisyl)-2-isopropyl-1,2-ethylenediamine.

OK in 2-propanol, which shows excellent activity and enantioselectivity for hydrogenation of a variety of simple aromatic, heteroaromatic, and α,β -unsaturated ketones.^{7,8} To our regret, the (R)- α -hydroxy acetal [(R)-3a] was obtained in only 37% enantiomeric excess (ee).8 We here report that this difficult problem is solved by the use of 2-dimethylamino-1-phenylethylamine (DMAPEN), an N,N-dimethylethylenediamine ligand, instead of conventional ethylenediamine ligands with no N-substituent.^{9,10} Thus, the newly devised RuCl₂(tolbinap)(dmapen)⁶-t-C₄H₉OK catalyst system promotes hydrogenation of α-keto acetals with a substrate-tocatalyst (S/C) molar ratio as high as 5000 to give the chiral α-hydroxy acetals in up to 98% ee. Moreover, hydrogenation of racemic α -heterosubstituted ketones affords the β -substituted alcohols with excellent enantio- and diastereoselectivity via dynamic kinetic resolution.8,11

(R)-DMAPEN was easily synthesized from commercially available (R)-2-phenylglycinol according to the method described in the literature. ¹² RuCl₂[(S)-tolbinap][(R)-dmapen] [(S,R)-1] (Scheme 1) was prepared in 86% isolated yield by

Scheme 1

Ar₂ Cl (CH₃)₂
P N

Ar₂ Cl H₂

(S,R)-1: Ar = 4-CH₃C₆H₄

(S,R)-1

$$X + H_2$$

(S,R)-1

 $X + H_2$

(S,R)-1

 $X + H_2$

(R)-3a-g

(S)-3h,i

a: Ar = C₆H₅, X = OC₂H₅
b: Ar = C₆H₅, X-X = O(CH₂)₃O
c: Ar = 2-CH₃C₆H₄, X = OC₂H₅
b: Ar = 2-CH₃C₆H₄, X = OC₂H₅
c: Ar = 4-CH₃C₆H₄, X = OC₂H₅
i: Ar = 4-FC₆H₅, X = CH₃
i: Ar = 4-FC₆H₅, X-X = (CH₂)₂NBoc(CH₂)₂

X = OC₂H₅

treatment of RuCl₂[(*S*)-tolbinap](dmf)_n (oligomeric form)¹³ and 1.0 equiv of (*R*)-DMAPEN in DMF at 25 °C for 3 h (see the Supporting Information). The ³¹P{¹H} NMR spectrum (CDCl₃ at 25 °C) showed a set of doublets at 36.6 and 51.4 ppm with $J_{P-P} = 38.5$ Hz, suggesting that this complex exists as a single diastereomer in solution phase.¹⁴

The chiral Ru catalyst **1** efficiently promotes asymmetric hydrogenation of a series of arylglyoxal dialkyl acetals $2\mathbf{a} - \mathbf{g}$ with a high S/C ratio (Scheme 1, eq 1). When a 0.7 M solution of $2\mathbf{a}$ (580 mg) in 2-propanol containing the (S)-TolBINAP/(R)-DMAPEN-Ru complex [(S,R)-1] (1.4 mg, S/C = 2000) and t-C₄H₉OK (13.0 mg) was stirred under 8 atm of H₂ in a glass autoclave at 30 °C for 18 h, the α -hydroxy acetal (R)- $3\mathbf{a}$ was produced in 96% ee quantitatively (Table 1). The reaction with an S/C of 5000 smoothly

Table 1. Asymmetric Hydrogenation of Arylglyoxal Dialkyl Acetals, Aryl *sec*-Alkyl Ketones, and Racemic α-Heterosubstituted Ketones^a

				alcohol			
ketone		H_2	time	$yield^c$		ee^e	
no.	S/C^b	(atm)	(h)	(%)	$\mathrm{d}\mathbf{r}^{d,e}$	(%)	config^f
2a	2000	8	18	95		96	R
$2a^g$	5000	50	22	98		96	R
2a	500	1.5	9	94		96	R
2b	1000	8	24	97		93	R
2c	1000	8	18	96		92	R^h
2d	1000	8	4	95		96	R^h
2e	1000	8	5	96		98	R^h
2f	1000	8	4	95		92	R^h
2g	1000	8	24	91		97	R^h
2h	2000	8	10	94		95	S
2 i	400	8	7	98		>99	S^h
4a	500	8	9	90	>99:1	98^i	$1R,2R^h$
4b	1000	8	64	92	96:4	99^i	$1R,2R^h$
6	1000	8	18	95	3:97	98^{j}	$1R,2S^h$

^a Unless otherwise stated, reactions were conducted at 25−30 °C using a 0.3−1.4 M ketone solution in 2-propanol containing (S_r R)-1 (0.25−0.73 mM) and t-C4H₉OK (20 mM). Conversion was >95% in all cases. ^b Substrate/catalyst molar ratio. ^c Isolated yield. ^d Syn/anti diastereomeric ratio. ^e Chiral HPLC analysis. ^f Determined by the sign of rotation. ^g Reaction using 2.21 g of 2a (1.5 M). ^h See the Supporting Information. ⁱ Data for the syn diastereomer. ^j Data for the anti diastereomer.

proceeded under 50 atm of H₂. Complete conversion was attained even under 1.5 atm of H₂ at an S/C of 500. The hydrogen pressure did not affect the enantioselectivity. The substrate with a cyclic acetal **2b** was also hydrogenated in high optical yield. A high level of enantioselectivity was achieved in the reaction of 2′- and 4′-CH₃-substituted ketones, **2c** and **2d**. Reaction of ketone **2e** with an electron-donating

940 Org. Lett., Vol. 9, No. 5, 2007

⁽⁷⁾ Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. *J. Am. Chem. Soc.* **1998**, *120*, 13529–13530.

⁽⁸⁾ Noyori, R.; Ohkuma, T. *Angew. Chem., Int. Ed.* **2001**, *40*, 40–73. (9) For asymmetric hydrogenation of 1-tetralones catalyzed by BINAP/chiral 1,4-diamine—Ru complexes, see: Ohkuma, T.; Hattori, T.; Ooka, H.; Inoue, T.; Noyori, R. *Org. Lett.* **2004**, *6*, 2681–2683.

⁽¹⁰⁾ For asymmetric hydrogenation of sterically hindered *tert*-alkyl ketones with BINAP/picolylamine—Ru catalysts, see: Ohkuma, T.; Sandoval, C. A.; Srinivasan, R.; Lin, Q.; Wei, Y.; Muñiz, K.; Noyori, R. *J. Am. Chem. Soc.* **2005**, *127*, 8288–8289.

⁽¹¹⁾ Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36–56.

^{(12) (}a) O'Brien, P. M.; Sliskovic, D. R.; Blankley, C. J.; Roth, B. D.; Wilson, M. W.; Hamelehle, K. L.; Krause, B. R.; Stanfield, R. L. J. Med. Chem. 1994, 37, 1810—1822. (b) Giardina, G. A. M.; Raveglia, L. F.; Grugni, M.; Sarau, H. M.; Farina, C.; Medhurst, A. D.; Graziani, D.; Schmidt, D. B.; Rigorio, R.; Luttmann, M.; Cavagnera, S.; Foley, J. J.; Vecchietti, V.; Hay, D. W. P. J. Med. Chem. 1999, 42, 1053—1065. (c) Russell, M. G. N.; Matassa, V. G.; Pengilley, R. R.; van Niel, M. B.; Sohal, B.; Watt, A. P.; Hitzel, L.; Beer, M. S.; Stanton, J. A.; Broughton, H. B.; Castro, J. L. J. Med. Chem. 1999, 42, 4981—5001.

⁽¹³⁾ Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. *Org. Synth.* **1993**, *71*, 1–13.

⁽¹⁴⁾ The configuration of (*S,R*)-1 is not determined yet. However, we assume that it has a *trans*-dichloro geometry according to the structures of eleven known *trans*-RuCl₂(diphosphine)(1,2-diamine) complexes. See: Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. *Angew. Chem., Int. Ed.* 1998, *37*, 1703–1707, and reference 7.

CH₃O group at the 4' position achieved excellent enantioselectivity of 98%, while substitution of an electron-attracting Cl function (2f) slightly reduced the stereoselectivity. The reaction of 2-naphthyl ketone **2g** afforded (R)-**3g** in 97% ee with the same sense of enantioselection. Interestingly, the Ru complex (S,R)-1 also effects asymmetric hydrogenation of unfunctionalized aryl sec-alkyl ketones. Thus, isobutyrophenone (2h) was smoothly converted to (S)-3h in 95% ee. The degree and sense of enantioselection were the same as those in the reaction of α -keto acetals 2a-g with the same S,R catalyst, 15 indicating that the TolBINAP/DMAPEN-Ru catalyst recognizes dialkoxymethyl moiety as a just sec-alkyl group. This characteristic markedly differs from that of the former (S)-XylBINAP/(S)-DAIPEN-Ru catalyst, with which hydrogenation of **2a** and **2h** gave (S)-**3a** and (R)-**3h** in 37% ee and 99% ee, respectively. 7,8 Hydrogenation of 2i in the presence of (S,R)-1 afforded (S)-3i in >99% ee, which is an intermediate for the synthesis of a non-narcotic analgesic and muscle relaxant agent.16

A practical procedure for enantio- and diastereoselective synthesis of 1-aryl-2-aminoalkanols¹⁷ is highly desired because of their pharmacological¹⁸ and synthetic¹⁹ utility. Asymmetric hydrogenation of the corresponding racemic α -amino ketones via dynamic kinetic resolution with in-situ mutation of the α stereogenic center is a straightforward method, yielding a single stereoisomer of products.^{1,8,11} Despite the synthetic utility of this reaction, no efficient catalyst has been reported. The TolBINAP/DMAPEN—Ru catalyst showed excellent performance on both enantio- and diastereoselectivity in hydrogenation of racemic α -amido ketones (\pm)-4 (Scheme 2, eq 2). When racemic 2-(benzoyl-

Scheme 2

(±)-

$$C_6H_5$$
 C_6H_5
 C_6H_5

methylamino)propiophenone [(\pm)-4a] was hydrogenated with (*S,R*)-1 in a basic 2-propanol ([4a] = 0.4 M, [*t*-C₄H₉OK] = 33 mM, ketone/Ru/base = 500:1:45, 30 °C, 8 atm H₂, 9 h),

the (1R,2R)-amido alcohol, (1R,2R)-5a, was produced in 98% ee with a perfect syn-selectivity (Table 1). The excellent diastereoselectivity clearly shows that the TolBINAP/ DMAPEN-Ru catalyst acts as a bulky metalhydride according to the Felkin-Anh model.²⁰ Removal of the amide protector from (1R,2R)-5a (NaOH, C₂H₅OH aq, reflux, 12 h) gave (-)-pseudoephedrine, a widely used nasal decongestant¹⁸ as well as a useful chiral auxiliary in synthetic organic chemistry. 19 In the same manner, racemic 2-(pivaloylamino)propiophenone $[(\pm)-4b]$ was converted to (1R,2R)-**5b** in 99% ee (syn/anti = 96.4:3.6) by hydrogenation with (S,R)-1. It is noteworthy that hydrogenation of racemic bezoin methyl ether $[(\pm)-6]$ with (S,R)-1 selectively afforded the anti (anti:syn = 96.6:3.4) alcohol (1R,2S)-7 in 98% ee (Scheme 2, eq 3, and Table 1). This is the first example of anti-selective asymmetric hydrogenation of α -alkoxy ketones under dynamic kinetic resolution.²¹ The exclusive antiselectivity suggests that the TolBINAP/DMAPEN-Ru catalyst differentiates between the α-CH₃O group and the α-phenyl ring purely by the size and not by the electronegativity.20,22

In conclusion, the newly devised TolBINAP/DMAPEN—Ru complex 1 in a base containing 2-propanol efficiently catalyzes asymmetric hydrogenation of arylglyoxal dialky-lacetals to chiral α -hydroxy acetals in excellent enantiomeric excess. Simple aryl sec-alkyl ketones are also hydrogenated with excellent enantioselectivity. Hydrogenation of racemic α -amidopropiophenones via dynamic kinetic resolution selectively gives the syn- α -amido alcohols in excellent ee by precise control of two contiguous stereocenters. High anti-and enantioselectivity are also achieved in the hydrogenation of racemic bezoin methyl ether. Thus, the TolBINAP/DMAPEN—Ru catalyst provides the most general procedure for asymmetric hydrogenation of aromatic ketones with α -branched carbon moieties, that is, CHR₂, CH(OR)₂, CH-(R¹)NR²COR³, and CH(R¹)OR².

Acknowledgment. This work was supported by a Grantin-Aid from the Japan Society for the Promotion of Science (JSPS) (No. 18350046).

Supporting Information Available: Preparative methods and properties of chiral Ru complex 1, synthesis and procedures for asymmetric hydrogenation of α -branched ketones, NMR, GC, and HPLC behavior of products, together with $[\alpha]_D$ values and the absolute configuration determination. This material is available free of charge via the Internet at http://pubs.acs.org.

OL070125+

Org. Lett., Vol. 9, No. 5, 2007

^{(15) (}R)-3a and (S)-3h are both β alcohols in equation 1.

⁽¹⁶⁾ Nieduzak, T. R.; Margolin, A. L. Tetrahedron: Asymmetry 1991, 2, 113-122.

⁽¹⁷⁾ Asymmetric aminohydroxylation of 1-arylpropenes produced the 1-aryl-2-aminopropanols as only minor regioisomeric products. See: Barta, N. C.; Sidler, D. R.; Somerville, K. B.; Weissman, S. A.; Larsen, R. D.; Reider, P. J. *Org. Lett.* **2000**, *2*, 2821–2824.

⁽¹⁸⁾ Hughes, D. T. D.; Empey, D. W.; Land, M. J. Clin. Hosp. Pharm. **1983**, *8*, 315–321.

⁽¹⁹⁾ Myers, A. G.; Charest, M. G. In *Handbook of Reagents for Organic Synthesis: Chiral Reagents for Asymmetric Synthesis*; Paquette, L. A., Ed.; Wiley: Chichester. 2003: pp 485–496 and references cited therein.

Wiley: Chichester, 2003; pp 485–496 and references cited therein. (20) (a) Chérest, M.; Felkin, H.; Prudent, N. *Tetrahedron Lett.* **1968**, 2199–2204. (b) Anh, N. T. *Top. Curr. Chem.* **1980**, 88, 145–162.

⁽²¹⁾ Asymmetric transfer hydrogenation of (\pm) -6 catalyzed by a chiral arene—Ru complex in a formic acid— $(C_2H_5)_3N$ mixture selectively gave the syn (not anti) alcohol. See: Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori, R.; Ikariya, T. *Org. Lett.* **1999**, *1*, 1119—1121.

⁽²²⁾ Reduction of **6** with potassium tri-*sec*-butyl borohydride (K-Selectride), a bulky and non-chelation reducing agent, in ether at -78 °C predominantly afforded *anti-7*. See: Davis, F. A.; Haque, M. S.; Przeslawski, R. M. *J. Org. Chem.* **1989**, *54*, 2021–2024.